Under counter water filter

Mon-Fri   9-5 Pacific
(12-8 PM Eastern)


Home Page


About Us


Energy Products


Frequency Generator

Compare Generators

Dr. Clark Zapper

ReBuilder & Neuropathy

Magnets & the Body

Magnet Therapy Kit

Dr. Philpott Magnets

Zero Point Energy (ZPE)

Tachyon Products

EMF/ELF Protection

Dr. Royal Rife

What Is a Rife Machine?


Body Cleansing

Cleanses by Dr.Clark

Bowel Cleanse

Parasite Cleanse

Kidney Cleanse

Liver Cleanse

Metal Cleanse
Candida Cleanse
"Quick" Cleanses
Cancer Cleanse

WholeFood Cleanse

Pet Cleanse

ProbioticsDigestive Enzymes

Dr. Hulda Clark
Super Greens - pH

Water World


Water - A Word

Water Filters

Undersink Filter
Whole House Filter
Filtration Methods

Clustered Water

"Hex" Water

The Vitalizer Plus

Ozone & Water

Ozone Generator

Kangen Ionized pH Water


Nutrition For Life


VIBE by Eniva

Power 4 - Super Juices
Mangosteen 100
Noni Juice 100

Acai Berry 100

Goji Berry 100

Vita-Mix Juicer

Why Juice?

Whole Foods

Whole Food Store


Immune Support


Colloidal Silver

Ionic Silver100


Cesium & pH

Power 4 - Super Juices

Peroxide - H202

Essiac Tea

Oregano OilWhole Foods
ASEA - Super Molecule
Dr. Clark Zapper

Oxygen & Water



OzoneOzone Generator

Peroxide - H202

Kangen pH Water

Structured Water

Vitalizer Plus

Misc. Topics


Cancer Alternatives

Dr. Royal Rife

Dr. Hulda Clark

Neuropathy (Nerves)














Weight LossInfrared LightUltraViolet Light

Kangen Income Opportunity



Marketing Tools


Exchange Links


More to come.


Natural Holistic Remedies
and Healthy Lifestyle Products

Carbon Water Filter



The following article is a great summary for the uses of carbon as a water filter medium... for those interested.


Carbon Filtration: What It Does, What It Doesn’t

by Gene Franks, Pure Water Products

The largest single section in the of the “EPA Regulated Water Contaminants” published in Water Technology magazine, is the section on Organics (including VOCs, or “Volatile Organics”). In this category the EPA lists 32 very nasty chemical contaminants—many with familiar names like benzene, 1,1 dichlorethylene, carbon tetrachloride, dioxin, styrene, toluene, chloroform, and vinyl chloride. To give an idea of the extensiveness of this list, a single one of the 32 items is “Total Trihalomethanes,” a category made up of still uncounted chemicals, assumed to number in the thousands, that are formed when water containing organic matter (i. e., virtually all water) is treated with chlorine. The maximum allowable level for trihalomethanes, which are suspected cancer causers and are present in virtually all chlorinated tap water, is only 1/10 of one part per million. For the Organics category, the primary treatment in all cases and the only recommended treatment in most cases, is activated carbon.

The EPA’s Pesticides category lists 14 familiar poisons such as Aldicarb, Chlordane, Heptachlor, and Lindane. In all 14 cases, activated carbon is the only recommended treatment. Of the 12 Herbicides listed (2,4-D, Atrazine, etc.), activated carbon is the only treatment recommended.

For Organics, Pesticides, and Herbicides, the standard treatment, and in most cases the only treatment recommended, is activated carbon.

When people say water filter, they most frequently mean a carbon filter of some variety, because since the Egyptians discovered that storing water in charcoal made it stay fresher and taste better, carbon has been a standard feature in water treatment. Its centuries of popularity attest to its effectiveness.

What carbon filtration doesn’t do can be seen in the remaining three categories of the EPA contaminant list. Carbon is mentioned as a treatment for only one of the four Microbiological contaminants listed: turbidity. It is not recommended for coliform removal or for cysts, though ironically, some of the very tight solid carbon block filters now on the market remove bacteria (though manufacturers seldom make this claim) and cysts like giardia and cryptosporidium quite handily. Multi-Pure solid carbon blocks, in fact, were the first filtration device certified by NSF (the most prestigious independent agency that tests and certifies product performance) for removal of cryptosporidium. Multi-Pure and some other very tight carbon block filters remove cysts simply because of their restricted pore size. Multi-Pure blocks are absolute 1/2 micron filters, making cryptosporidium organisms about ten times too fat to go through the holes. Thus, although other types of very tight filtration might work as well, the very dense carbon block filters now on the market are very effective against certain forms of microbiological contaminants.

The same is true in the Inorganic category. Activated carbon itself appears in the EPA list as a preferred treatment only for mercury, but carbon block filters can also be engineered to remove lead. Some are NSF-certified for lead removal and for asbestos removal. By and large, however, removal of inorganics is the property of reverse osmosis, distillers, and ion exchange systems.

The same is true in the final category, Radionuclides, where carbon is ineffective and reverse osmosis (RO) and ion exchange are definitely the treatments of choice.

If you are considering a home water filtration system, here are some things to keep in mind:

Chlorine was not considered in the discussion above because EPA does not consider it a water contaminant. Although this is patently absurd, it is also politically expedient and not likely to change soon. (Keep in mind that all EPA maximum contaminant allowables are politically negotiated figures that do not necessarily have any basis in reality. They represent a compromise between the ideal and what can practically be done by water treatment plants.) Chlorine removal is what carbon is best at, and nothing else equals carbon’s ability to remove chlorine.

When distiller sellers or zealous MLMers show you a chart that indicates that reverse osmosis (RO) units do not remove chlorine or certain chemicals, keep in mind that RO units contain one or more carbon filters. In fact, “thin film” RO units, the most common type, must remove all chlorine from the water as the very first operation else the unit’s membrane will be destroyed. Such statements are simply advertising cheap shots that are technically true but practically false. [The truth is that the RO membrane does not remove chlorine, but that the carbon filter that precedes it does.] Distillers, similarly, have great problems with chlorine and VOC removal. Tap water should always be carbon filtered before distillation, else the VOCs and chlorine will re-enter the distilled water or will be released into the air for you to breathe.

Contaminants that people most frequently want removed that are not readily removed by carbon filtration are fluoride, nitrates, and sodium. Reverse osmosis and distillation remove all three, so either combined with a high quality carbon filter provides complete treatment. All three can also be removed by selective, non-carbon filters designed for the purpose. For example, you can obtain a double filter with one fluoride and one carbon cartridge if fluoride removal is desired.

All carbon filters are not created equal. Some perform much better than others, and some are designed for selected special purposes. Performance depends upon the amount and the type of carbon, the way the filter is designed, and the residence time of the water. Carbon blocks in general work better than GAC (granular activated carbon) filters, though many of the latter can do a fine job. GAC is usually of the consistency of coffee grounds, so it is subject to “channeling” and “fluidizing.” If you don’t believe that water can cut channels, look at the Grand Canyon. Solid carbon blocks keep the carbon in place and do not let it wash away.

Filter carbon is a manufactured product. Though it is sometimes erroneously called charcoal, it is actually a carbon material that has been treated by steam and high temperature in the absence of oxygen.

There are many types of carbon. Most filter carbon is manufactured from coal, but other substances like wood and nut shells are also used. Coconut shell carbon is becoming popular not only because it is made from a renewable resource but also because it produces very good tasting water and is particularly good at trihalomethane removal. A new specialty carbon called catalytic carbon is now available that will remove hydrogen sulfide gas (which produces the “rotten egg” smell in some well water) and is very good at removing chloramines (the mixture of ammonia and chlorine used as a disinfectant by some water supplies).

Carbon filters remove chemicals by the process of adsorption (as opposed to absorption). Webster’s Collegiate Dictionary defines adsorption as “the adhesion in a thin layer of molecules to the surfaces of solid bodies in which they are in contact.” Carbon attracts certain chemicals at the molecular level much in the way that a magnet attracts and holds metal filings. When the surfaces are full, the filter must be discarded and replaced.

Timely cartridge replacement is very important, because filter carbon has different capacity for different contaminants. Many people rely on chlorine removal tests to determine when filter carbon should be renewed. This works only if chlorine removal is all you expect from the filter. Most carbon filters will begin to “leak” other chemicals long before they begin to allow chlorine to pass. For example, the MatriKX 1+ extruded carbon block used in most PWP RO units and carbon filtration units has an amazing 20,000 gallon chlorine removal capacity (when operated at .75 gallons per minute), but the same filter loses its effectiveness at trihalomethane removal at about 750 gallons. It should, therefore, be replaced annually although it will still have lots of chlorine removal capacity left.

Filter makers rate filters in “microns.” Microns are a size measurement of the pore size, so the smaller the number, the tighter the filter. CTO stands for “Chlorine, Taste, Odor” and means that the maker is saying only that the filter will remove chlorine and improve taste and odor. The filter might do more, but the maker isn't guaranteeing it. CTO-grade cartridges are usually about 10 microns in pore size. Five-micron filters remove more chemicals but will plug up faster if there is heavy particulate matter in the water. One-micron filters are for drinking water only. In general, they are too tight to filter large amounts of water without slowing the flow to unacceptable levels. The new MatriKX CeramiKX block are half-microns blocks.

Filter makers also use the words “absolute” and “nominal” to describe their products’ micron ratings. Absolute means absolute. Nominal means “more or less.” Our CeramiKX .5 micron blocks are absolute .5 micron. That’s as tight as it is practical to make a carbon filter. If it gets tighter, the water won’t go through. The MatriKX +1 is a nominal one micron, meaning it’s very good at getting things in the one to two micron range and larger.

There is in effect a law of diminishing returns in carbon filters. In some ways, the more they do, the shorter their lifespan. Simply stated, a very tight filter plugs up fast because it catches everything. A drinking water filter that promises to last three or five years can do so only because it lets everything smaller than a tennis ball pass.



Adsorption in activated carbon is an important tool for water purification. It applies especially to dissolved organic substances which are responsible for taste or odor, or may actually be of an irritating or poisonous nature. Also, activated charcoal removes some substances by catalytic reaction (chlorine, for example). Activated carbon also removes certain types of particulate matter by mechanical filtration action, and some substances such as a suspension of an organic vapor by a combination of filtration and adsorption means.

The capacity of activated carbon to remove specific substances and mixtures depends on the nature of the specific chemical compounds, their concentration, conditions of adsorption, such as temperature, pressure, contact time, etc., and how the activated carbon is applied to the problem. :

The accompanying table classifies the ability to be removed for specific chemical compounds and describable substances and mixtures according to the following- arbitrary scale


0 - Not a logical use for activated carbon.
1 - Category too broad and non-specific, need more information.
2 - Possibility. Suggest making laboratory and pilot tests. Success may be a matter of definition.
3 - Might be an application, either alone or in combination with other treatment methods.
4 - May be good solution, but special conditions apply, or activated carbon can serve as one step in total treatment. may not be a complete solution in itself.
5 - Fair application, removed to some degree by activated carbon. Good application, but requires definition of results to be obtained.
6 - Definite application for activated carbon under some conditions.
7 - Good application, removed in satisfactory quantity by activated carbon.
8 - Excellent application, removed in high quantity by activated carbon.
9 - Proven use, probably best solution.

Since the above mentioned factors exert considerable control over capacity, it must be borne in mind that the figures given in the table are for general guidance only. The specific case should be tested on laboratory and pilot scale if it is a new application.

Accidental spills of toxic materials 7
Acetaldehyde 7
Acetic add 7
Acetone 8
Activated sludge effluent 6
Air purification scrub water 6
Alcohol 8
Alkali 2
Amines 6
Ammonia 2
Amyl acetate 9
Amyl alcohol 9
Animal excrement 6
Antifreeze 7
Aquarium water 7
Benzenes 9
Bilge water 6
Biochemical warfare agents 6
Bleaching solutions 3 9
Boiler blowdown water 3
Boiler compounds 4
Boiler condensate 6
Bottle washing 6
Brackish water 3
Butyl acetate 9
Butyl alcohol 9
By-products, organic 6
Calcium hypochlorite 9
Can, drum washing 6
Carbon dioxide 0
Cheese manufacturing wash water 6
Chemical tank wash water 6
Chloral 9
Chloraimne 7
Chlorobenzene 9
Chlorine 9
Chlorophenol 9
Chlorophyll 8
Cistern water 7
Citric acid 8
Coal mine drainage water 0
Condensation (from ref. coils) 6
Cresol 9
Dairy or milk processing wash water 6
Decayed leaves 8
Decayed organic matter 8
Decaying substances 8
Defoliants 9
Deionized water 6
Detergents 6
Dissolved oil 9
Dyes 9
Electroplating rinse water 4
Emulsions 4
Ethyl acetate 9
Ethyl acrylate 9
Ethyl alcohol 9
Ethyl a mine 8
Ethyl chloride 8
Ethyl ether 8
Fermentation slop 3
Fertilizers 3
Fiber and fabric washing 3
Filter backwash 3
Fluorides 4
Food processing wash water 4
Food processing waste 4
Formaldehyde 4
Fruit processing waste 3
Gasoline 9
Glycol 9
Hardness 0
Herbicides 9
Hydrogen bromide 4
Hydrogen chloride 2
Hydrogen fluoride 2
Hydrogen iodide 4
Hydrogen selenide 5
Hydrogen sulfide 5
Hypochlorous add 9
Imhoff effluent 3
Industrial wastes 3
Inorganic acids 1
Inorganic chemicals 1
Insecticides 9
Iodine 9
Isopropyl acetate 9
Isopropyl alcohol 9
Ketones 9
Laboratory drains 3
Lactic acid 8
Lake water 8
Laundry effluent 4
Leaf extract 9
Lime 0
Liquid contaminants 2
Lysol 9
Mercaptans 8
Metal salts 1
Methyl acetate 8
Methyl alcohol 8
Methyl bromide 9
Methyl chloride 8
Methyl ethyl ketone 9
Naptha (coal tar) 9
Nitric acid 5
Nitro benzenes 9
Nitrotoluene 9
Odor of unknown origin 6
Oil slick 4
Organic acids 8
Organic esters 9
Organic odor 7
Organic poisons 8
Organic salts 7
Organic taste 7
Oxalic acid 9
Oxidizing agents 3
Ozone 8
Packing house effluent 4
Paper mill effluent 4
Particulate matter 4
Phenol 9
Phosphates 0
Photographic wash water 4
Pickle liquor 1
Plastic monomers 7
Plumbing drain 6
Poisons 5
Polluting substances 3
Potassium permanganate 8
Precipitated iron 4
Precipitated sulfur 3
Process drain 4
Propionaldehyde 5
Propionic acid 8
Propyl acetate 8
Propyl alcohol 8
PropyI chloride 8
Putrefying substances 4
Radioactive solutions 1
Rain water 9
Recycled water 6
Residual brine from electrolysis 3
River water 9
Rubber & plastic hose taste 9
Salt water 2
Sea water 2
Sediment 2
Sewage plant effluent 5
Soap 5
Sodium hypochlorite 9
Soluble iron 4
Soluble sulfur 4
Solvents 8
Sour milk 5
Spoiled foods 5
Spring water 9
Stagnant water 5
Starch 5
Stick water 5
Sugar 5
Sulfonated oil 8
Sulfuric acid 3
Suspended matter 4
Suspended oil 4
Sweet water 8
Swimming pool water 8
Tanning waste 5
Tar emulsion 8
Tartaric acid 8
Taste of unknown origin 6
Toluene 9
Toluidine 9
Trichlorethylene 9
Trickle filter effluent 6
Turpentine 9
Urine 4
Vegetable processing waste 4
Vinegar 7
Waste products 4
Well water 9
Wine industry wash water 5
Wool scouring water 5
Xanthophyll 8
Xylene 9


To summarize, carbon is an extremely versatile and highly effective water treatment medium. It has immense surface area. A single pound of granular activated carbon has a filtering surface area equivalent to 125 acres! It is the best known treatment for organic chemicals, VOCs, pesticides, herbicides, and chlorine and its by-products. It is also an unchallenged taste-and-odor improver. When arranged in solid carbon or extruded carbon block format, it also provides very high quality particulate filtration, in some cases down into the sub-micron level.



Some of our favorite water products...

Whole House Water Filter

In accordance to PhD Hulda Clark Guidelines

The Whole House Water Filter filters every drop of water entering the house, providing clean water to kitchen sinks, refrigerator, bathroom sinks, showers, tubs, dishwasher, and washing machine... making it one of the most affordable ways to get clean water to your entire house!

Premium, ultra compact, specially treated coconut shell carbon. One cubic foot of specially processed and pre-hot-washed Activated Carbon from Coconut Shells is used as filter medium.  

alternative medicine


back to top


alternative medicine logo

These statements about water, water filtration, water filters, water filtration techniques, etc... have not been evaluated by the Food and Drug Administration. The information contained here about water filters is not intended to diagnose, treat, cure, or prevent any disease.  Readers are encouraged to consult their health care provider before beginning any "alternative" protocol.  Water filter page.